The authors thank Martin Cowie for the design of the compressed-gas plumbing for the lowtemperature device and D. L. Rabenstein for assistance with the NMR spectroscopy. This work was supported by grants from the Medical Research Council of Canada to MNGJ and PWC and from the Alberta Heritage Foundation for Medical Research to PWC.

References

Baker, L. W., Chothia, C. H., Pauling, P. \& Petcher, T. J. (1971). Nature (London), 230, 439-445.

Birdsall, N. J. M., Burgen, A. S. V. \& Hulme, E. C. (1978). Mol. Pharmacol. 14, 723-736.
Сhothia, C. (1970). Nature (London), 225, 36-38.
Codding, P. W. \& James, M. N. G. (1973). Am. Crystallogr. Assoc. Summer Meet., Storrs, CT, June, Abstr. 02.
Cromer, D. T. (1968). Acta Cryst. A24, 321-324.
Eeles, W. T. (1953). Acta Cryst. 6, 809-810.

Fregerslev, S. \& Rasmussen, S. E. (1968). Acta Chem. Scand. 22, 2541-2556.
James, M. N. G. \& Matsushima, M. (1973). Acta Cryst. B29, 838-846.
Jellinek, F. (1957). Acta Cryst. 10, 277-280.
JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Kier, L. B. (1967). Mol. Pharmacol. 3, 487-494.
Kier, L. B. (1968). Mol. Pharmacol. 4, 70-76.
Makriyannis, A., Theard, J. M. \& Mautner, H. G. (1979). Biochem. Pharmacol. 28, 1911-1915.
Mason, R. \& Robertson, G. B. (1966). Adv. Struct. Res. Diffr. Methods, 2, 57.
Motherwell, S. (1979). PLUTO. Univ. Chemical Laboratory, Cambridge, England.
Pullman, B., Courrière, Ph. \& Coubeils, J. L. (1971). Mol. Pharmacol. 7, 397-405.
Reed, K. W., Murray, W. J., Roche, E. B. \& Domelsmith, L. N. (1981). Gen. Pharmacol. 12, 177-185.

Schulman, J. M., Sabio, M. L. \& Disch, R. L. (1983). J. Med. Chem. 26, 817-823.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY70 system. Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1984). B40, 434-436

Polytypism, Twinning, and Disorder in 2,2-Aziridinedicarboxamide

By K. Fichtner and H. Grell
Zentralinstitut für physikalische Chemie, Akademie der Wissenschaften der DDR, Rudower Chaussee 5, 1199 Berlin, German Democratic Republic

(Received 5 December 1983; accepted 8 March 1984)

Abstract

Some phenomena of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$ [Brückner (1982). Acta Cryst. B38, 2405-2408] are explained on the basis of the OD theory of Dornberger-Schiff. The symbol of the OD groupoid family is $\operatorname{Pba}(2)|(n) x, y|(\overline{4}) x^{\prime}, y^{\prime}$ with parameters $x \approx \pm \frac{1}{6}, y \approx 0$ (or $x \approx 0, y \approx \pm \frac{1}{6}$); $x^{\prime} \approx \pm \frac{1}{4}, y^{\prime} \approx \pm \frac{1}{4}$. The net constants are $a=b \approx 12 \cdot 38 \AA$; the distance between next-butone layers is $c_{o} \approx 7.55 \AA$.

Introduction

The structures of two crystalline forms of the title compound have been reported by Brückner (1982): form $A, P 41_{1} 2, a=12 \cdot 382(2), c=30 \cdot 211$ (3) $\AA, V=$ $4632 \AA^{3}, Z=32$; form $B, P 1, a=12 \cdot 381(2), b=$ $12.391(2), \quad c=15.829(2) A \AA, \quad \alpha=74.3$ (1),$\quad \beta=$ $83 \cdot 1(1), \gamma=90 \cdot 0(1)^{\circ}, V=2312 \AA^{3}, Z=16$ (axes of form B interchanged for better comparison with form $A)$. The two crystals are formed by different stacking of layers; the layer symmetry is not extended to the whole packing (Brückner, 1982, p. 2405).

These are strong indications that the two crystals are order-disorder (OD) structures. The OD theory
of Dornberger-Schiff (Dornberger-Schiff, 1956, 1979, 1982; Dornberger-Schiff \& Grell-Niemann, 1961) explains the existence of different stacking variants of a layered structure by partial symmetry operations, which are valid for any single layer but do not extend to its adjacent layers. The different structures are built up of the same kind of layer and the same pairs of layers; they differ, however, in triples and higher n-tuples of layers.

The aim of this paper is to explain polymorphism, twinning and apparent disorder and to describe the stacking possibilities of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$.

The family of OD structures according to form \boldsymbol{A}

Fig. 1 shows a layer of form A consisting of hydrogenbonded molecules arranged in rows along the x direction (P layer). There are also layers with rows along the y direction (Q layer). The unit cell consists of eight layers with the following sequences in the z direction: $P_{1} P_{2} Q_{3} Q_{4} P_{5} P_{6} Q_{7} Q_{8}$. Obviously, there are two types of layer pairs: $P P$ and $Q Q$ on the one hand, and $P Q$ and $Q P$ on the other. Consecutive pairs of the same type are transformed into each other by the 4_{1} spacegroup transformation. The layers have a square net,
although the layer group $\operatorname{Pba}(2)$ (notation according to Dornberger-Schiff, 1956) requires only a rectangular net.

The b glide plane of P_{1} is not extended to P_{2}. Therefore, according to OD theory, for P_{2} there is an alternative position to that actually existing in form A. These two possible positions of P_{2} relative to P_{1} (Fig. 2a) are described by non-space-group transformations: glide planes perpendicular to the z direction with components $x=\frac{1}{6}, y=0$ or $x=-\frac{1}{6}, y=0$, respectively. Thus any $P P$ pair is concisely characterized by

$$
\begin{equation*}
P P:(n) x, y \quad(x, y)=\left(\frac{1}{6}, 0\right) ;\left(-\frac{1}{6}, 0\right) . \tag{1}
\end{equation*}
$$

Accordingly, for any $Q Q$ pair results:

$$
\begin{equation*}
Q Q:(n) x, y \quad(x, y)=\left(0, \frac{1}{6}\right) ;\left(0,-\frac{1}{6}\right) . \tag{2}
\end{equation*}
$$

None of the glide planes of P_{2} are extended to Q_{3}. Thus, in addition to the position of Q_{3} in form A, three alternative positions of Q_{3} relative to P_{2} are possible. In Fig. 2(b), each of these possible positions is characterized by a fragment of a molecule and a vector from a twofold axis of P_{2} to a twofold axis of the respective Q_{3} position. For a unique description of these positions a convention on symbols of OD groupoid families (Fichtner, 1984) is used: Any position of Q_{3} results from the application of a non-spacegroup $\overline{4}$ operation to P_{2}. Any of these $\overline{4}$ operations may be considered as a result of two consecutive space transformations: a clockwise rotation of 90° around an axis parallel to the z direction through the origin of P_{2} (twofold axis) and a glide reflexion in a plane perpendicular to the z direction.* The different

Fig. I. A layer P in crystal form A. The fragment of a molecule used in Fig. 2 is indicated by filled bonds.
positions of Q_{3} are then uniquely described by the respective glide components. Any pair $Q P$ may be characterized in the same way,

$$
\begin{align*}
& P Q, Q P:(\overline{4}) x^{\prime}, y^{\prime} \\
& \quad\left(x^{\prime}, y^{\prime}\right)=\left(\frac{1}{4}, \frac{1}{4}\right) ;\left(-\frac{1}{4}, \frac{1}{4}\right) ;\left(-\frac{1}{4},-\frac{1}{4}\right) ;\left(\frac{1}{4},-\frac{1}{4}\right) . \tag{3}
\end{align*}
$$

In summary, the OD groupoid family as given in the Abstract results. Special features are:
-For a $P Q$ pair the first two variants of (3) on the one hand and the second two variants on the other are almost identical, because in any Q layer 'along x is an approximate repeat vector a/2' (Brückner, 1982, p. 2407).
-Form A is an OD structure of maximum degree of order; only one kind of triple of layers occurs (compare Fig. $3 a$). It may be supposed that this triple is energetically more favourable than the alternative triple.

Discussion of form B

From the hypothesis that forms A and B belong to the same family of OD structures, it follows that B contains the same layers and layer pairs as form A. There are four layers per unit cell in form B, as may be seen from the volumes of the unit cells of A and B. In order to determine possible structures in accordance with the lattice parameters given for form B, five consecutive layers $P_{1} P_{2} Q_{3} Q_{4} P_{5}$ are considered. P_{1} and P_{5} are related by the translational vector c. The projection of \mathbf{c} along c^{*} has the components $x \approx \frac{1}{6}$, $y \approx \frac{1}{3}$ (Fig. $3 b$). The positions of P_{2}, Q_{3} and Q_{4} may be determined using formulae (1), (2) and (3). P_{2} is

(a)

(b)

Fig. 2. Possible positions for next layers. Possible positions of (a) P_{2} for fixed layer P_{1}, and (b) Q_{3} for fixed layer P_{2}. Any layer is characterized by a fragment of one molecule.

(a)

(b)

Fig. 3. Schematic representation of stacking variants. (a) Sequence of layers in form A. (b) The four possibilities of form B as concluded from the lattice constants. Any layer is characterized by the position of its origin in projection along \mathbf{c}^{*}.
uniquely determined, because the alternative position is not compatible with the position of P_{5}. Q_{3} may have one of four positions indicated by $Q_{3}^{\mathrm{i}}, Q_{3}^{\mathrm{i}}, Q_{3}^{\mathrm{iii}}$, $Q_{3}^{\text {iv }}$. If Q_{3} and P_{5} are fixed, Q_{4} is uniquely determined. Thus, only four stacking variants are in agreement with the observed lattice constants of form B.

The atomic coordinates of form B (Brückner, 1982, deposited data) show that the variants (ii) and (iii) do not exist in form B, whereas both the variants (i) and (iv) are present. This results because:
-it was impossible to decide between N and O atoms in the Fourier map;
-variants (i) and (iv) are almost identical and may be transformed into each other by interchanging O atoms and NH_{2} groups.

More precise information on the occurrence of (i) and (iv) in form B could be obtained from a detailed investigation of the distribution of the intensities in reciprocal space. Possible results are, for instance:
-statistical occurrence of (i) and (iv) with approximately equal probabilities;
-alternating occurrence of (i) and (iv);
-the crystal consists of regions containing either
only (i) or only (iv). The volume of the regions of type (i) and the volume of the regions of type (iv) are about the same.

In both variants (i) and (iv) the two possible kinds of triples of layers are present. In (i) as well as in (iv) their proportion is $3: 1 \mathrm{in}$ favour of the triple existing in form A (see Fig. $3 b$).

Concluding remark. The example discussed is also of interest in OD theory. No structure with a similar stacking of layers has been found so far. The combination of pairs of layers related by a centre of symmetry and pairs of layers related by a fourfold inversion axis is rather unusual.

References

Brückner, S. (1982). Acta Cryst. B38, 2405-2408.
DORNBERGER-SCHIFF, K. (1956). Acta Cryst. 9, 593-601.
Dornberger-Schiff, K. (1979). Krist. Tech. 14, 1027-1045.
DORNBERGER-SCHIFF, K. (1982). Acta Cryst. A38, 483-491.
Dornberger-Schiff, K. \& Grell-Niemann, H. (1961). Acta Cryst. 14, 167-177.
Fichtner, K. (1984). In preparation.

Structure-Potency Relationships for Three Isomers of (\pm)-1,2,3-Trimethyl-4-phenyl-4-piperidinol*

By M. Cygler \dagger and F. R. Ahmed
Division of Biological Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6

(Received 17 October 1983; accepted 20 January 1984)

Abstract

The three isomers of the title compound, $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$, are known to have propionate esters with potency rankings $\gamma>\alpha>\beta$. The present X-ray analyses have shown their configurations to be: α-base, $t-2-\mathrm{CH}_{3}$, $t-3-\mathrm{CH}_{3}, r-4-\mathrm{C}_{6} \mathrm{H}_{5} ; \beta$-base, $c-2-\mathrm{CH}_{3}, t-3-\mathrm{CH}_{3}, r-4$ $\mathrm{C}_{6} \mathrm{H}_{5} ; \gamma-\mathrm{HCl}, \quad t-2-\mathrm{CH}_{3}, \quad c-3-\mathrm{CH}_{3}, \quad r-4-\mathrm{C}_{6} \mathrm{H}_{5}$, as deduced also from an independent NMR study. In the solid state, the three isomers have the piperidine ring in the chair conformation with the 1 -methyl and 4-phenyl in equatorial positions. Intermolecular hydrogen bonding is present, as $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}^{\prime}$ in the α-base and β-base structures, and as $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl} \cdots \mathrm{H}^{\prime}-$ N^{\prime} in the $\gamma-\mathrm{HCl}$. Comparison of the isomers of prodine, promedol alcohol, and the present compound

^[* NRCC Publication No. 23167. \dagger NRCC Research Associate 1979-1981. Present address: Department of Biochemistry, University of Alberta, Edmonton, Canada T6G 2H7.]

0108-7681/84/040436-05\$01.50
shows that the potency is highest for the isomers with the configuration $c-3-\mathrm{CH}_{3}$ (or $c-5-\mathrm{CH}_{3}$), $r-4-\mathrm{C}_{6} \mathrm{H}_{5}$. Also, activity is most inhibited for the present β-2,3dimethyl isomer, where $2-\mathrm{CH}_{3}$ is cis and $3-\mathrm{CH}_{3}$ is trans to $4-\mathrm{C}_{6} \mathrm{H}_{5}$. Preliminary interpretation of the structure-potency relationships indicates that the degree of potency of these analgesics may be dependent on the preferred orientations of the 4 -phenyl and/or 4-hydroxyl relative to the piperidine ring. [Crystal data: α-base: $M_{r}=219 \cdot 33$, Pna $2_{1}, \quad a=$ $10.137(1), \quad b=11.446(1), \quad c=10.815(1) \AA, \quad V=$ $1254.8 \AA^{3}, \quad Z=4, \quad D_{m}=1.162, \quad D_{\mathrm{x}}=1.161 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=480, \quad T=294 \mathrm{~K}, \quad \lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1.54056 \AA$, $\mu=5.26 \mathrm{~cm}^{-1}, \quad R=0.032$ for 1294 observed reflexions; $\quad \beta$-base: $\quad M_{r}=219 \cdot 33, \quad P 2_{1} / a, \quad a=$ 18.434 (1),$\quad b=9.391$ (1), $\quad c=7.445$ (2) $\AA, \quad \beta=$ $91.27(1)^{\circ}, V=1288.5 \AA^{3}, Z=4, D_{m}=1 \cdot 130, D_{x}=$ $1 \cdot 130 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=480, T=294 \mathrm{~K}, \lambda\left(\mathrm{Cu}, K \alpha_{1}\right)=$ $1.54056 \AA, \mu=5.12 \mathrm{~cm}^{-1}, R=0.043$ for 1617 observed reflexions; $\gamma-\mathrm{HCl}: M_{r}=255 \cdot 80, P 2_{1} / a, a=$

